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Detailed measurements of the flow over a compression corner were taken using 
hot-wire probes. The experiments were performed in supersonic flow ( M  = 2.64) 
under adiabatic wall conditions. The incompressible analogues of the boundary- 
layer profiles were obtained and their integral characteristics and shape factors 
correlated. Comparison with the self-similar profiles used by Lees & Reeves (1964) 
to describe interaction problems showed some similarities between the shape 
factors, but the measured negative shears in the separated bubble proved to be 
much less. 

1. Introduction 
At present most experimental data on separated supersonic flows consist of 

wall pressure measurements. Pressure distributions of this kind have been pro- 
duced by several investigators: Chapman, Kuehn & Larson (1958) succeeded in 
correlating pressure distributions up to the so-called plateau pressure; Curle 
(1961) extended this correlation to include heat transfer effects; and a further 
extension to cover hypersonic flows was developed by Lewis (1967). 

These pressure distributions are accepted as the standard means available for 
testing solutions obtained theoretically. Of the many theoretical attempts few 
are successful in predicting the correct pressure distribution; yet, when these 
methods have been extended to cover non-adiabatic cases, several difficulties 
have appeared. For this reason, it is believed that experimental descriptions of 
the flow field giving more information about the boundary-layer profiles in the 
interaction region are needed to help the theoretician choose proper assumptions 
while developing his analysis. 

In  the present note, emphasis was put on detailed measurement of the laminar 
boundary-layer flow over it compression corner at i l l  = 2-64 and Re in the range 
1-3 x lo5 to 1.7 x 106 with compression angles of 9", 11" and 13". 

2. Experimental procedure 
Measurements of the boundary-layer profiles were taken using hot-wire 

anemometry. This technique is particularly suitable for separated flows owing 
to the directional insensitivity and minimal disturbances of hot-wire probes. In  
an earlier attempt by Sfeir (1969) measurements obtained with a hot-wire 
anemometer and a pitot probe at the same point of a flow were used simul- 
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taneously to compute all the dynamic and thermodynamic variables a t  that 
point. This, in fact, permitted testing of the constancy ofp across the shear layer, 
which was confirmed for small compression angles. For this reason, in the present 
report the hot-wire data supplemented by the wall pressure were used to compute 
the velocity u, temperature T and mass flux profiles in the shear layer. 

The hot wire measures essentially two quantities: the resistance at equilibrium 
(unheated wire) and the heat loss of the wire when it is overheated with respect to 
the flow around it. These two measurements may be expressed in another form, 
namely, as the temperature T,, at equilibrium and the Nusselt number Nu,. 
These have to be corrected for end losses, since the wire has a finite length and is 
soft-soldered at  each end to two needle supports. Two correction factors C, and 
CR can be determined such that 

NU = CNNu,, T, = C,T,,. 
Nu and T, are respectively the Nusselt number and recovery temperature of 

an equivalent wire of infinite length. The correction factors are given by 
Kovasznay (1953). 

Empirical laws established by Dewey (1965) give the following relations for 
heat loss from infinite cylinders normal to a stream: 

Nu,(M, Re,) = N.u,(Re,, 00) $(Re,, M ) ,  
7" = (7 - Tc)/(Tr - r e ) .  

Nu,(Re,, 00) is a function describing the variation of Nu, with Re, for M $ I and 
#(Re,, M )  is the departure from this relation when M is no longer very large. 
Nu, and Re, are, respectively, the Nusselt and Reynolds numbers based on the 
wire diameter, viscosity and thermal conductivity at  local stagnation conditions. 
7 is the ratio of T,  to the total temperature; T,I~ and qf are respectively the con- 
tinuum limit of 7 and its free molecular limit. It is known that 7* is a unique 
function of the Knudsen number Kn, for a given M .  

Given an additional measurement, either the total or the static pressure, it is 
possible to reduce the hot-wire data using these relations. An iteration scheme 
involving the equations for end losses, recovery temperature and heat losses 
yields the velocity, specific mass and temperature at  the point of measurement. 

This computational procedure converges quite fast: a few hundred measure- 
ments may be reduced on any small-size computer within a very reasonable 
time. In all, about fifty boundary-layer profiles were measured for the three 
compression angles tested. 

Particular care was taken to achieve two-dimensional laminar-flow conditions 
throughout the tests. It was found, by mounting side plates at equal distances 
from the centre-line and by varying this distance, that the flow tends to a limit 
when the aspect ratio becomes of order one and above, provided that the com- 
pression angle is less than 15". Lewis showed that when this limit is attained two- 
dimensional conditions prevail. The influence of the ramp length after the com- 
pression corner was also thoroughly investigated. In  all the measurements 
reported, this length was larger than the critical length, mentioned by Siriex, 
Mirande & Delery (1 966), below which downstream conditions influence reattach- 
ment. These details, as well as a description of the models tested, the probes used 
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and the wind tunnel where the tests were run, are given by Sfeir (1969). This 
report also includes the relations mentioned above and the numerical procedure 
for the reduction of the hot-wire measurements. 

3. Results and discussions 
Several integral methods have had varying success in describing interactions 

between shocks and laminar boundary layers. One is the moment of momentum 
method suggested by Sutton (1937) and Tani (1954), and later improved by Lees 
& Reeves (1964), who used curve-fit relations for all velocity-dependent integral 
parameters based on Cohen & Reshotko’s (1956) similar profiles including the 
analogues of Stewartson’s (1954) ‘lower branch’ for separated flows. Holden 
(1970) has extended Lees & Reeves’ method to include the energy equation. 
These methods are in a sense similar to the procedure followed by Thwaites (1949). 
However, Thwaites’s curve-fit is based on a variety of exact solutions and experi- 
mental results and is used up to the point of separation. In  contrast, the profiles 
used by Lees & Reeves, in addition to being independent of the pressure-gradient 
parameter, are not agreed upon as being sufficient or even truly representative of 
separated boundary layers in such interaction problems. In  order to examine this 
point the incompressible analogues of our measured profiles are found using 
Stewartson’s transformation: 

c m  

P m  c m  c m  ~ c n  ct? ax = - P, Qe dx, d Y  = L a y ,  C P  u = -u, 

where C is the speed of sound and the subscript e refers to conditions at the edge 
of the boundary-layer, the subscript co referring to upstream infinity. 

The transformed displacement thickness 8:, momentum thickness 8; and 
mechanical-energy thickness 8: are then found: 

where 6” is the boundary-layer thickness of the incompressible analogue. 
As mentioned earlier in Lees & Reeves’s method, the similar profiles are 

independent of the pressure-gradient parameter and their properties are repre- 
sented in terms of the velocity parameters a, and a2 defined by 

a, = (S*/U,) [aU/aY],,, for the attached flow, 

a2 = [ Y/6*Iu=, for the separated flow. 

a, is the normalized transformed velocity gradient at  the wall and a2 is the 
normalized transformed distance from the wall to the zero-velocity point. 

Figures 1 (a), (6 )  and (c)  show &*IS:, cY?,*lS,* and S:/S: as functions of a, and a2 
along with the theoretical curve-fits of Lees and Reeves. Although the ranges of 
variation for the compression angle 8 and Re are quite small, no trend for any 
systematic shift of data is observed and a fairly good correlation is obtained for 
these shape factors in terms of a, and a2. It is to be noted that the data shown are 
representative of the flow through the whole separation and reattachment pro- 
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FIGURES l (a ,  b) .  For legend see next page. 
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FIGURE 1. (a )  8*/8,*, (b )  Szj8; and ( c )  as functions of a, and a,; M = 2.64. -, curve- 
fit based on self-similar profiles; , 0 = go, Re = 1.40 x 105; 0, 0 = ll", Re = 1.61 x lo6; 
.,6 = 13", Re = 1.70 x lo5. 
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FIGURE 2. 8,*/&,* as a function of a, and a,; M = 2.64. -, curve-fit based on self-similar 
profiles; 0 .0  = 9", Re = 1.40 x 106; 0 , 0  = ll", Re = 1.61 x 106; .,0 = 13", Re = 1-70 x lo6. 
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FIGURE 3. P a s  a function of a, and a,; M = 2.64. -, curve-fit based on self-similar profiles ; 
0, 0 = 9", Re = 1.40 x lo5; 0, 0 = ll", Re = 1.61 x lo5; 0 ,  0 = 1 3 O ,  Re = 1.70 x lo6. 

cesses and not only in the 'free interaction ' region where Chapman's correlation 
(Chapman et al. 1958) and its extensions are known to hold. 

The ratio S,*/S: is shown in figure 2. Here the theoretical curve-fit based on 
similar solutions is practically constant for attached flow and increases rapidly 
with a, after separation. This behaviour is quite clearly contradicted by our 
experimental results. The fact that for similar profiles S:/Sz is a weak function 
of a, has successfully been used by Hankey & Cross (1967) to obtain a simple and 
elegant closed-form solution to interaction problems; it would now seem that 
such an assumption is only reasonable for weak interaction problems with no 
appreciable separated bubbles. 

The largest discrepancy with the similar profiles is to be seen in figure 3, 
showing the parameter P = (GF/Ue) [aU/aY],=, versus a, and a,. This parameter 
is representative of the wall shear. Good agreement is observed in the attached- 
flow region. In the separated region the self-similar profiles differ from our results 
in that they indicate exceedingly large negative shear stresses. Also, the theo- 
retical profiles used by Lees & Reeves have the property that the magnitude of 
the maximum reversed velocity after separation increases, reaches a maximum, 
then decreases again with increasing a,; the opposite occurs during reattachment 
and a similar variation is followed by the wall shear stress. This complicated 
sequence of events is not confirmed by our results, where the maximum reversed 
velocity is found to be a monotonic function of [ YIu,,. Two recent studies by 
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Stewartson & Williams (1969) andLu (1970) give a correct qualitative description 
of the reversed velocity although they still indicate larger negative shears than 
are actually measured. 

4. Conclusions 
The experimental results shown clearly demonstrate that the transformed 

shape factors of the measured profiles may be correlated in terms of a, and a2 and 
are close to the curve-fit based on self-similar solutions. This, however, does not 
imply a close similarity between our measurements and the theoretical profiles; 
in fact there is a marked difference, particularly for the reversed flow in the 
separation region, where the results of Stewartson & Williams and Lu are more 
representative. It can also be argued that a proper solution, in terms of predicting 
pressure distribution on an adiabatic wall, may be obtained using profiles with 
integral properties close to those obtained experimentally, but having different 
reversed-flow characteristics. In  other words, the reversed flow seems to play 
a negligible part in momentum transfer. 

It would seem that part of the difficulties encountered theoretically in non- 
adiabatic interaction problems may be explained as follows: heat exchange in the 
separated bubble is a strong function of the flow there; therefore, in order to 
predict heating or cooling effects accurately, it is necessary that the profiles used, 
in addition to having the right integral properties, must also properly describe 
the reversed-flow region. This problem may be resolved, it seems, by including the 
energy equation as suggested by Holden. Direct comparison with the curve-fits he 
used is, however, not possible as our data are valid for adiabatic wall conditions 
only. 

More measurements covering a wider range for 8, M and Re are of course 
necessary to confirm the ideas presented here, particularly for the correlation of 
&*/ST, SZlS: and S,*/SF. Curve-fits based on experimental profiles may then yield 
better solutions for interaction problems with heating and cooling. 
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